
A hypothesis or theory is clear, decisive, and positive,
but it is believed by no one but the person who created it.
Experimental findings, on the other hand, are messy,
inexact things, which are believed by everyone except
the person who did that work.

 Harlow Shapley
 Through Rugged Ways to the Stars

Reaction Networks

Frank Timmes
School of Earth and Space Exploration

Advanced Computing Center
Arizona State University

UC HIPACC Summer School 22Jul2011

cococubed.asu.edu ftimmes@asu.edu

J I N A

Reaction networks are an key tool for modeling nucleosynthesis processes
and their associated energy generation.

In essence, nuclear reaction networks in astrophysics are a system of
nonlinear, stiff, generally sparse, ordinary differential equations (ODEs).

Let’s walk through an example of a reaction network and indicate
informally how it induces a system of ODEs.

We’ll also assume that the contents
are kept at constant temperature and
volume (constant density). For
historical reasons this is referred to as
hydrostatic burning in astrophysics.

Suppose we throw the various species in a pot that is constantly stirred so
its contents remain spatially homogeneous for all time.

Denote the instantaneous values of the molar abundances by
YA, YB, YC, YD, and YE. We want to write down five ODEs that describe
the evolution of the five mole fractions.

Every time A!2B we lose one unit of A and this reaction occurs with an
instantaneous, non-negative, real valued rate of KA!2B.

Consider first the instantaneous rate of change of YA.

Similarly the reaction A + C!D loses a unit of species A, while 2B!A,
B+E!A+C, and D!A+C each produce a unit of species A. So we
write

ẎA = −KA→2B + K2B→A −KA+C→D + KD→A+C + KB+E→A+C

Continuing in this way, we form a system of ODEs that govern our reactor:

ẎB = 2KA→2B − 2K2B→A + KD→B+E −KB+E→A+C

ẎC = −KA+C→D + KD→A+C + KB+E→A+C

ẎD = KA+C→D −KD→A+C −KD→B+E

ẎE = KD→B+E −KB+E→A+C

ẎA = −KA→2B + K2B→A −KA+C→D + KD→A+C + KB+E→A+C

KA→2B = αYA K2B→A = βY 2
B

KA+C→D = γYAYC KD→B+E = εYD

KD→A+C = δYD KB+E→A+C = ξYBYE

The functions ", #, $, %, &, and ' may depend on temperature and density.

For A!2B, the more A there is, the more reaction there will be. We take
the rate of A!2B to be proportional to YA : KA!2B = "YA.

For A+C!D, a unit of species A must meet a unit of species C. We take the
probability of such an encounter to be proportional to the product YAYC :
KA+C!D = $YAYC.

And our reaction network takes the final form

ẎA = −αYA + βY 2
B − γYAYC + δYD + ξYBYE

ẎB = 2αYA − 2βY 2
B + �YD − ξYBYE

ẎC = −γYAYC + δYD + ξYBYE

ẎD = γYAYC − δYD − �YD

ẎE = �YD − ξYBYE

Interlude Nuclear reactions involve three of the four fundamental forces, and involve
the emission or absorption of nuclei and nucleons, photons ($-rays) and
leptons (e-,(, and their anti-particles).

Weak interactions (those involving leptons) generally proceed more
slowly than those involving nucleons and photons, but these are the only
reactions that can change the global proton to neutron ratio.

A key quantity is the cross section) for a nuclear reaction.)ij for the
reaction i(j,k)l is the number of reactions per second on target nucleus i
divided by the flux of nuclei of type j (number/cm2/s).

σ(v) =
number of reactions per sec
flux of incoming projectiles

=
rij/ni

njvij

Nuclear cross sections are usually reported in “barns”, 10-24 cm2.

The reaction rate per unit volume rij, in the simplest case, is then

More generally, the targets and projectiles have distributions of
velocities, in which case rij is given by

d3n = n

�
m

2πkBT

�3/2

exp
�
− mv2

2kBT

�
d3v

Evaluation of the integrals depends on the particle statistics.
For nuclei i and j that obey Maxwell–Boltzmann statistics

ni and nj can be moved outside of the integral.

rij = [flux of j]niσij(v) = vijnjniσij(v) cm−3s−1

ri,j =
�

σ(|�vi − �vj |)|�vi − �vj |d3nid
3nj cm−3s−1

where <)v>ij is the velocity integrated cross section. The rate of change
in the number density of species i with time is

ṅi =
�

j,k

rjk cm−3s−1

Ẏi =
�

j,k

NAρ < σv >ij YjYk =
�

j,k

λijρYjYk =
�

j,k

RijYjYk s−1

rij < σv >ij ninj = (NAρ)2 < σv >ij YiYj cm−3s−1

where *ij is what common reaction rate compilations list,
and Rij is “the reaction rate” used in my codes.

or

i + j → k + l

Ẏi = −YiYjRij

Ẏj = −YiYjRij

Ẏk = YiYjRij

Ẏl = YiYjRij

Consider a unidirectional binary reaction with unity coefficients.

Where the reaction rate Rij absorbs the density, Avogado number, and
<)v>ij terms.

cii + cjj → ckk + cll

Ẏi = −

ci

ci!cj !
Y

ci

i Y
cj

j Rij

Ẏj = −

cj

ci!cj !
Y

ci

i Y
cj

j Rij

Ẏk =
ck

ci!cj !
Y

ci

i Y
cj

j Rij

Ẏl =
cl

ci!cj !
Y

ci

i Y
cj

j Rij

Consider the unidirectional case when the coefficients are not unity.

For identical reactants in the entrance channel, i=j, set ci = 2ci and cj = 0.

cii + cjj ↔ ckk + cll

Ẏp =
∑

r,s

cp

cr!cs!
Y

cr

r
Y

cs

s
Rrs −

∑

q

cp

cp!cq!
Y

cp

p
Y

cq

q
Rpq

For a general bidirectional binary reaction

If there are identical reactants, i=j, set ci = 2ci and cq = cs = 0.

Interlude

The Medical Alchemist
Franz Christoph Janneck,
(1703 - 1761)
Oil on copper - 13" x 9"

The ODEs from nuclear reaction networks are nonlinear and stiff.

Time Integration

Physically a stiff system of ODEs means some isotopes are
changing on much faster timescales than other isotopes.
The hydrogen burning PPI chain is an excellent example.

P P NP e++ + +
1010 years

P PP
NP

P
NP

PN
NP+ + +

106 years

PNP
P
NP+ +

6 sec
 ray

Mathematically, stiffness means the ratio of the maximum to the minimum
eigenvalues *j of the Jacobian matrix are large.

S =
max|Re(λj)|

min|Re(λj)|
! 1

S > 1015 is not uncommon in nuclear astrophysics.

Pragmatically, stiffness means that an implicit time integration is
typically necessary to solve the initial value problem.

This, in turn, means we’ll be solving systems of linear equations.
As the linear algebra will generally dominate the time to solution,
we’ll want to use efficient solvers.

Our system of ODEs

ẏ = f(y)

may be written in vector form as

The Jacobian matrix is the derivative of the ODEs with respect to their
dependent variables

Let’s do an example of forming the Jacobian matrix ...

J̃ =
∂f
∂y

Ẏi =
�

j

CiRjYj +
�

jk

Ci

Cj !Ck!
RjkYjYk +

�

jkl

Ci

Cj !Ck!Cl!
RjkYjYkYl

Ẏ (4He) = −Y (4He) Y (12C) R + . . .

Ẏ (12C) = −Y (4He) Y (12C) R + . . .

Ẏ (16O) = +Y (4He) Y (12C) R + . . .

Consider the 12C(",$)16O reaction proceeding at a rate R.

Each right hand side contributes two Jacobian matrix elements:

J(
4
He,4 He) = ∂Ẏ (

4
He)/∂Y (

4
He) = −Y (

12
C) R + . . .

J(
4
He,12 C) = ∂Ẏ (

4
He)/∂Y (

12
C) = −Y (

4
He) R + . . .

J(
12

C,4 He) = ∂Ẏ (
12

C)/∂Y (
4
He) = −Y (

12
C) R + . . .

J(
12

C,12 C) = ∂Ẏ (
12

C)/∂Y (
12

C) = −Y (
4
He) R + . . .

J(16O,4 He) = ∂Ẏ (16O)/∂Y (4He) = +Y (12C) R + . . .

J(16O,12 C) = ∂Ẏ (16O)/∂Y (12C) = +Y (4He) R + . . .

The Jabobian matrix elements represent flows into (positive) or
out of (negative) an isotope.

The matrix is not positive-definite or symmetric as reactions rates are not
usually equal, but they are typically diagonally dominant.

! "

!
"

##$%#&'()(*+'

#,%-#./)+'

%0123#4*/5'+

67(8'#9:;'+<=>

##?1@0AB?$

##?120AB??

##-1%%ABC%

##%1C-ABC$

##01?0ABC?

#D,1E%ABC?

#D21E@ABC$

#D01C%ABC%

#DE1-@AB?C

#D-1E,AB?2

#D?12,AB?%

N P

N
P

 76 Isotopes
 582 Rates
82.0% Sparse
Flows (#/sec):
 3.05E+13
 3.29E+10
 3.56E+07
 3.84E+04
 4.15E+01
 -2.23E+01
 -2.07E+04
 -1.91E+07
 -1.77E+10
 -1.64E+13
 -1.52E+16

For a constant number of isotopes, the pattern of nonzeros doesn’t change
with time, but each matrix element may change in magnitude or sign as the
temperature, density, or abundances change with time.

The matrices get sparser as the number of isotopes increase.

In principal every species reacts with every other species, resulting in a
full, dense Jacobian matrix. In practice it is possible to neglect most of
these reactions.

Captures of n, p, d, t, 3He and " on heavy nuclei are easier than
fusions of heavier nuclei because of the Zi Zj dependence of the
repulsive Coulomb term in the nuclear potential.

Photodisintegration reactions tend to eject free nucleons or "-particles
instead of splitting the nucleus into bigger pieces.

With the exception of the PP-chains and Big Bang nucleosynthesis,
reactions involving d, t, and 3He are negligible because their abundances
are effectively zero.

NP

N
P

 200 Isotopes
2134 Rates
91.9% Sparse
Flows (#/sec):
 1.85E+14
 1.34E+11
 9.75E+07
 7.07E+04
 5.13E+01
 -2.69E+01
 -3.70E+04
 -5.10E+07
 -7.03E+10
 -9.69E+13
 -1.34E+17

(n,)
(,p)

(,)
(,n)(p,)

(p,n)

(,p)

(p,)
(,)

(n,)

(,n)

(n,p)

Thus, with a few important exceptions, we only need to consider twelve
reactions linking a nucleus to its neighbors by the capture of an
n, p, " or $ and release a different one of these four.

In explicit methods, the state at a future time is computed as a function of
the state at the current time:

In implicit methods, the state at the next time instant is computed as a
function of the state at the next time instant:

ẏ = −y −→ y(t) = y(0)e−t

∆y

∆t
=

y(t + ∆t)− y(t)
∆t

= −y(t)

∆y

∆t
=

y(t + ∆t)− y(t)
∆t

= −y(t + ∆t)

y(t + ∆t) = y(t)(1−∆t) −→ −∞ as ∆t→∞

y(t + ∆t) =
y(t)

1 + ∆t
−→ 0 as ∆t→∞

|1−∆t| < 1

|1 + ∆t| > 1

Consider the ODE

ẏ = f(y)

Given the initial conditions (temperature, density, composition), we wish to
evolve the stiff ODEs that represent our reaction network.

We’ll take a look at several (but not all) implicit methods Nearly all of
these methods are in active use among various researchers.

A good ODE integrator should exert some adaptive control over its
own progress, making frequent changes in its stepsize.

The purpose adaptive stepsize control is to achieve a predetermined
accuracy in the solution with minimum computational effort.

Many small steps should tiptoe through treacherous terrain,
while a few great strides should speed through smooth countryside.

The resulting gains in efficiency are not mere 10%s or factors of 2; t
hey can be factors of 10, a 100, or more.

Sometimes accuracy may be demanded not directly in the solution itself,
but in some conserved quantity that can be monitored.

Implementation of adaptive stepsize control requires that the stepping
algorithm return information about its performance, and most importantly,
an estimate of its truncation error.

where the change + is found by expanding f(yn+1) about f(yn)

y
n+1 = yn + ∆

(1̃/h − J̃) · ∆ = f(yn)

Ã · x = b

The simplest 1rst order Euler method advances over a time step h by

This method costs 1 Jacobian and 1 right-hand side evaluation,
1 matrix reduction, and 1 backsubstitution.

which is simply

This is the smallest possible cost per time step and is one of the most
common methods for evolving nuclear reaction networks.

This method is 1rst order accurate, which as given provides no rigorous
estimate of the truncation error over a given time step.

Heuristics, usually limiting the change in any abundance to be less than
some small percentage, are often invoked to gain some sense of accuracy
and to form the next time step.

One could implement “step doubling” to gain a formal accuracy estimate;
take two half step and one full step. If the two solutions agree within some
specified accuracy tolerance, accept the time step.

Step doubling is relatively expensive. Higher order methods obtain
accuracy estimates by comparing solutions at different orders. We turn
to two of these schemes next.

yn+1 = yn +

4∑

i=1

bi∆i

Ã · ∆1 = f(yn)

Ã = (1̃/γh − J̃)

Ã · ∆2 = f(yn + a21∆1) + c21∆1/h

Ã · ∆3 = f(yn + a31∆1 + a32∆2) + (c31∆1 + c32∆2)/h

The bi, $, aij, and cij are fixed constants of the method.

The 4th order Kaps-Rentrop method advances a time step h by

where the +i are found from solving the staged equations

The truncation error is estimated by comparing an embedded
3rd-order solution with the 4th-order solution.
This in turn, permits adaptive stepsize control.

Ã · ∆4 = f(yn + a41∆1 + a42∆2 + a43∆3) + (c41∆1 + c42∆2 + c43∆3)/h

This general feature of higher-order integration methods impacts the
optimal choice of a linear algebra package.

This method costs 1 Jacobian, 3 right-hand side evaluations, 1 matrix
reduction, and 4 backsubstitutions for a time step that meets the specified
integration accuracy.

In this method not all of the right-hand sides are known in advance,
+4 depends on +3 ... depends on +1.

h = H/m Ã = (1̃ − J̃)

Ã · ∆0 = hf(yn) y1 = yn + ∆0

Ã · x = hf(yk) − ∆k−1

∆k = ∆k−1 + 2x

yk+1 = yk + ∆k

Ã · ∆m = h[f(ym) − ∆m−1]

y
n+1 = ym + ∆m

then for k=1,2 ... m-1 solving the staged equations

The variable order Bader-Deuflhard method advances a large time step H
from yn to yn+1 by forming

closure is obtained by the last stage

The exact number of times the staged sequence is executed depends on the
accuracy requirements and the smoothness of the solution.

The staged sequence is executed at least twice, yielding a 5th order
method, or a maximum 7 times, yielding a 15th order method.

Accuracy estimates of a time step is made by comparing solutions from
different orders. This in turn permits adaptive stepsize control.

Minimum cost is 1 Jacobian, 8 right-hand side evaluations, 2 matrix
reductions, and 10 backsubstitutions for a time step that meets the
specified integration accuracy.

Cost per step is at least twice as large as the Euler or Kaps-Rentrop methods,
but it may be more efficient if time steps at least twice as large can be taken.

Interlude

Matrix Ã is reduced to upper
triangular form in tandem with a
right-hand side b by Gaussian
elimination, and backsubstitution
on the upper triangular matrix
yields the solution to Ã·x = b.

This is the method you probably
first learned.

If the arithmetic is exact, then the
answer computed in this manner
will be exact, if no zeros appear
on the diagonal.




2 −1 1
−2 2 −3

2 −4 3








x1

x2

x3



 =




3
−7

3








1 −1/2 1/2
−2 2 −3

2 −4 3








x1

x2

x3



 =




3/2
−7

3








1 −1/2 1/2
0 1 −2
0 −3 2








x1

x2

x3



 =




3/2
−4

0








1 −1/2 1/2
0 1 −2
0 0 −4








x1

x2

x3



 =




3/2
−4
−12








1 −1/2 1/2
0 1 −2
0 0 1








x1

x2

x3



 =




3/2
−4

3





x3 = 3 x2 = 2 x1 = 1

Ã·x = b But computer arithmetic is not exact, so there will always be some
truncation and rounding error in the answer.

If a “small” number appears on the diagonal, then its use as the pivot may
lead to computing differences between big numbers and little numbers
with a subsequent loss of precision.

A way around this problem is to ensure small pivots are not used by
swapping rows (partial pivoting) or rows and columns (full pivoting), so
as to use a particularly desirable pivot element.

What is a desirable pivot? It is not completely known theoretically. It is
known, both theoretically and in practice, that simply picking the largest
available element as the pivot is a very good choice.

LEQS is a dense matrix, Gaussian elimination routine.

The maximum element in each row serves as the pivot element, but no
row or column interchanges are performed, so LEQS may be unstable
on matrices that are not diagonally dominant.

A tiny amount of effort is expended to minimize calculations with
matrix elements that are zero.

All Gaussian elimination routines have the disadvantage that for a
sequence of right-hand sides, the entire matrix must be decomposed
for each right-hand side.

The origin of LEQS is somewhat obscure, but circa 1962. It may be the
most common solver used for evolving nuclear reaction networks.

Ford-Seattle
1962

Ã · x =

(

L̃ · Ũ

)

· x = L̃ ·

(

Ũ · x

)

= b

A frequently used form of Gauss Elimination is LU decomposition.

The basic idea is to find two matrices L and U such that LU = Ã,
where L is a lower triangular matrix (zero above the diagonal) and
U is an upper triangular matrix (zero below the diagonal).

Once we have computed L and U we the solve L·y=b then U·x=y,
a process that takes O(n2) operations.

While the factorization stage still requires O(n3) operations, it need be
done only once. We can solve with as many right-hand sides as we care to,
one at a time. This is an advantage.

A linear system is called sparse if only a relatively small number of its
matrix elements aij are nonzero.

It is wasteful to use general methods on such problems, because most of
storage the O(n3) operations involve zero operands.

Direct methods for sparse matrices are not that different from dense LU
decomposition methods; they are just cleverly applied with due attention
to the bookkeeping of zero elements.

The basic approach that all solvers use are
1) Symbolic decomposition
2) Numerical decomposition
3) Backsubstitution
4) Iterative polishing

MA28 is the Coke classic of sparse matrix solvers.
hsl.rl.ac.uk/archive/hslarchive.html

UMFPACK is a modern, direct sparse matrix solver.
www.cise.ufl.edu/research/sparse/umfpack

Iterative, or “matrix free” methods for sparse systems only reference the
matrix Ã through multiplication of a vector.

Iterative methods can be slow to converge and the number of iterations to
reach a given level of accuracy is not known a priori.

A popular method, generalized minimum residuals, seeks a minimization
of the function

 One way to generate a good “guess” is to solve some portion of Ã, call it
matrix Z, that is easy to solve. Z is called the preconditioner.

∇f(x) = ÃT ·
�
Ã · x− b

�
f(x) =

1
2
r · r =

1
2

���Ã · x− b
���
2

BiCG is described by Barret et al in “Templates for the Solution of Linear
Systems: Building Blocks for Iterative Methods”.
netlib2.cs.utk.edu/linalg/html_templates/Templates.html

SPARSKIT is a modern, iterative sparse matrix solver.
www-users.cs.umn.edu/~saad/software/SPARSKIT/sparskit.html

Interlude

Energy Generation

ε̇nuc = −

∑

i

NAMic
2
Ẏi − ε̇ν (erg g−1 s−1)

An important consequence of changing the composition is the release
(or absorption) of energy. The energy generation rate is

where Mi c2 is the rest mass energy of species i. Using

Mi = Aimµ + Mex,i

ε̇nuc =
∑

i

NAEbind,iẎi −

∑

i

NA(ZiMex,p + NiMex,n)Ẏi − ε̇ν

Mex,i = ZiMex,p + NiMex,n −Bi/c2

the energy generation rate is sometimes written as

The energy lost to the freely streaming neutrinos has two parts:
weak reactions and neutrino thermal processes.

For weak reactions, average
energy losses are calculated for
each nucleus by considering the
excited state distribution,
Gamow-Teller distribution, etc.

ε̇ν =

∑

i

〈Eν〉Ẏi,weak

The results are tabulated;
see for example Langanke &
Martinez-Pinedo (2000).

! " #

$#

%&

%&

%&

%&

ρ!"'(%&
)

ρ!"'(%&
ρ!"'(%&

#

ρ!"'(%&
%&

%&

%&

%&&

%&

%&

! " #

$#

%&

%&

%&

%&

%&

%&

%&

%&

%&

%&

*+(,−(-./012, *+(β+(3,-.4

5,(,+(-./012, 5,(β−(3,-.4

λ(
67

8

Thermal neutrino processes include

pair neutrino:

photoneutrino:

plasma neutrino:

bremsstrahlung:

recombination:

Results are typically expressed in
tables or fitting formulas,
for example, Itoh et al. 1996.

e+ + e− → ν + ν̄

e+ + γ → e− + ν + ν̄

γplasmon → ν + ν̄

e−continuum → e−bound + ν + ν̄

e− + N(Z, A)→ e− + N(Z, A) + ν + ν̄

100 103 106 109 1012

10-4

10-2

100

102

104

106

108

Density (g/cm3)

En
er

gy
 L

os
s

Ra
te

 (e
rg

/g
/s

)

T=5e8 K X(12C)=X(16O)=0.5

Pair neutrino

Photoneutrino

Plasma neutrino

Bremsstrahlung

Recombination

 Total

Integrating the ODEs serves two functions for stellar models.

Alpha-chain networks

The primary function, as far as the hydrodynamics is concerned,
is to provide the magnitude and sign of the energy generation rate.
The second function is to describe the evolution of the abundances.

Obtaining accurate values for the energy generation rate is
expensive in terms of computer memory and CPU time.

The largest block of memory in a stellar hydrodynamic program is
reserved for storing the abundances at every grid point.

For a given set of resources, one must choose between having
fewer isotopes or having less spatial resolution.

The general response to this tradeoff has been to evolve fewer isotopes,
and thus calculate an approximate energy generation rate.

The set of 13 nuclei most commonly used for this purpose are
 4He, 12C, 16O, 20Ne, 24Mg, 28Si, 32S, 36Ar, 40Ca, 44Ti, 48Cr, 52Fe, 56Ni.

!"# $%& $'(

%)*+ ,$- ,.&+ ,/0 !,12 !)3 .$45 ..&6

%78# %!49 %:1; ,%1 ,'*< !7&= !!>; !:&< .%?# .'8;
@αAγB@ααAγB @αAγB @αAγB @αAγB @αAγB @αAγB @αAγB @αAγB @αAγB @αAγB @αAγB

@CAγB@αACB @CAγB@αACB @CAγB@αACB @CAγB@αACB @CAγB@αACB @CAγB@αACB @CAγB@αACB @CAγB@αACB

*+CD=E2D=;5F8#GH6<I

 An !-chain network can give a energy generation rate that is generally
within 20% of the energy generation rate given by larger reaction networks
at a fraction of the cost.

!"#

!"!$

!"!#

!"%$

!"&# !"&' !"&%

()
*+
,-
./
*)
*+
01
23
).
4
01
*.
5*
+,
.,

&!
.6

&!
7

829*.567

(:;<362=*.>?+)
8@A$...ρ@A!..5

!%BA!CD72)2120<A"E'
263F
α.GH02)
I#@.26313;*6
I#@.26313;*6
ν.<366*6

Since (",p)(p,$) flows are faster than flows through (",$) channels, it is
essential to include (",p)(p,$) and ($,p)(p,") links in order to obtain
reasonably accurate energy generation rates and abundances when the
temperature exceeds !2.5 x 109 K.

A definition of what we mean by an "-chain network is prudent.

A strict "-chain only has (",$) and ($,") links among the 13 isotopes
4He, 12C, 16O, 20Ne, 24Mg, 28Si, 32S, 36Ar, 40Ca, 44Ti, 48Cr, 52Fe, and 56Ni.

!"# $%& $'(

%)*+ ,$- ,.&+ ,/0 !,12 !)3 .$45 ..&6

%78# %!49 %:1; ,%1 ,'*< !7&= !!>; !:&< .%?# .'8;
@αAγB@ααAγB @αAγB @αAγB @αAγB @αAγB @αAγB @αAγB @αAγB @αAγB @αAγB @αAγB

@CAγB@αACB @CAγB@αACB @CAγB@αACB @CAγB@αACB @CAγB@αACB @CAγB@αACB @CAγB@αACB @CAγB@αACB

*+CD=E2D=;5F8#GH6<I

In our "-chain network, we assume steady-state proton flows through the
intermediate isotopes 27Al, 31P, 35Cl, 39K, 43Sc, 47V, 51Mn, and 55Co.

This strategy permits inclusion of (",p)(p,$) sequences without
explicitly evolving the proton or intermediate isotope abundances.

!"# $%& $'(

%)*+ ,$- ,.&+ ,/0 !,12 !)3 .$45 ..&6

%78# %!49 %:1; ,%1 ,'*< !7&= !!>; !:&< .%?# .'8;
@αAγB@ααAγB @αAγB @αAγB @αAγB @αAγB @αAγB @αAγB @αAγB @αAγB @αAγB @αAγB

@CAγB@αACB @CAγB@αACB @CAγB@αACB @CAγB@αACB @CAγB@αACB @CAγB@αACB @CAγB@αACB @CAγB@αACB

*+CD=E2D=;5F8#GH6<I

HIPACC Network Projects

•Run the 13 isotope "-chain code in hydrostatic mode for the initial
conditions T = 3x109 K, , = 109 g/cm3, X(4He) = 1.0.

•Plot the abundance evolution with the supplied
gnuplot aprox13.gplt file (or something else).

•What isotope dominates when?

•Run the code in explosive (adiabatic) mode (same initial conditions).
Compare and contrast the two results.

•Look at the other reaction network avaliable at
http://cococubed.asu.edu/code_pages/burn.shtml

